I Semester M.Sc. Examination, January/February 2018 (CBCS Scheme) CHEMISTRY

C-105: Photochemistry (SC)

Time: 3 Hours Max. Marks: 70

Instruction: Answer Question No. 1 and any five of the remaining.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

- a) State the Grothus-Drapper law and Stark Einstein's law.
- b) Calculate the value of Einstein corresponding to radiation of wavelength 300 nm.
- c) What is meant by inverted multiplets?
- d) Phenol is a stronger acid in the excited state. Justify.
- e) What is pre-dissociation? How does it occur?
- f) Mention the involved energies and the time required for electronic, vibrational and rotational transitions.
- g) Phosphorescences is a delayed fluoroscence. Justify.
- h) What is meant by L-S coupling?
- i) Explain photosensitization with an example.
- j) Comment on photodegradation of polymers.
- k) What are impurity semiconductors? Give two examples.
- I) Give the effect of light intensity on the rate of photochemical reaction.
- 2. a) Explain the splitting of electronic energy levels, in atoms due to spin-orbit coupling considering the example of carbon atom.
 - b) State Franck-Condon principle. Explain how this principle is helpful in predicting the shapes of absorption bands. (5+5=10)
- 3. Write notes on:
 - a) Selection rules for electronic transitions in atoms and molecules.
 - b) Fates of excited species. (5+5=10)

- 4. a) Discuss the classification of photochemical reactions with suitable example for each class.
 - b) Write a note on quantum mechanical formulation of Franck condon principle.
 - c) State and explain the non-crossing rule of Teller. (3+3+4=10)
- 5. a) Fluorescence spectra bears a mirror image relationship with absorption spectra whereas phosphorescence spectra does not. Justify.
 - b) Outline the experimental techniques for the study of intermediates in a photochemical reactions. (5+5=10)
- 6. a) Explain different types of photo isomerization and mercury sensitized reactions.
 - b) Discuss the mechanism of conductivity in semiconductors. (6+4=10)
- 7. a) Explain the construction and working of p-n junction solar cells.
 - b) Describe the photochemical method of treatment of hazardous waste.
 - c) Mention the Hunds rules.

(3+3+4=10)

- 8. a) Comment on the rate constant and life times of reactive energy states for unimolecular and bimolecular reactions.
 - b) Write a note on gas phase photolysis.

(6+4=10)